首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   87篇
  国内免费   65篇
  2023年   16篇
  2022年   11篇
  2021年   78篇
  2020年   37篇
  2019年   52篇
  2018年   46篇
  2017年   37篇
  2016年   45篇
  2015年   65篇
  2014年   79篇
  2013年   74篇
  2012年   106篇
  2011年   93篇
  2010年   46篇
  2009年   37篇
  2008年   52篇
  2007年   39篇
  2006年   33篇
  2005年   27篇
  2004年   29篇
  2003年   24篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1129条查询结果,搜索用时 312 毫秒
991.
As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.  相似文献   
992.
X Li  JJ Li  JY Yang  DS Wang  W Zhao  WJ Song  WM Li  JF Wang  W Han  ZC Zhang  Y Yu  DY Cao  KF Dou 《PloS one》2012,7(8):e44045

Background

Dendritic cells (DCs) release bioactive exosomes that play an important role in immune regulation. Because they express low levels of class I major histocompatibility complex (MHC) and co-stimulatory molecules, exosomes derived from donor immature DCs (imDex) prolong allograft survival by inhibiting T-cell activation. However, this effect is limited and does not induce immunological tolerance when imDex are administered alone. Thus, we tested the effect of combined treatment with donor imDex and low-dose rapamycin on inducing tolerance in a mouse cardiac transplantation model.

Methods

ImDex were obtained from the culture supernatant of immature DCs derived from donor mouse (C57BL/6) bone marrow and were injected with suboptimal doses of rapamycin into recipient mouse (BALB/c) before and after transplantation. The capacity of this treatment to induce immune tolerance was analyzed in vitro and in vivo using the mouse cardiac transplantation model.

Results

Donor imDex expressed moderate levels of MHC class II and low levels of MHC class I and co-stimulatory molecules, but neither imDex nor subtherapeutic rapamycin dose alone induced cardiac allograft tolerance. Combined treatment with imDex and rapamycin, however, led to donor specific cardiac allograft tolerance. This effect was accompanied by decreased anti-donor antigen cellular response and an increased percentage of spleen CD4+CD25+ T cells in recipients. Furthermore, this donor specific tolerance could be further transferred to naïve allograft recipients through injection of splenocytes, but not serum, from tolerant recipients.

Conclusion

Combined with immunosuppressive treatment, donor imDex can prolong cardiac allograft survival and induce donor specific allograft tolerance.  相似文献   
993.
As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR) sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD), implying a potential relationship with the insulin signaling pathway.  相似文献   
994.
Combinations of proteasome inhibitors and histone deacetylases (HDAC) inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC) is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel) was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like) activity assay. Here we report that (i) the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii) the combination also synergistically inhibits tumor growth in vivo; (iii) two major pathways are involved in the synergistical effects of the combinational treatment: increased p21cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.  相似文献   
995.
Wei DD  Shao R  Yuan ML  Dou W  Barker SC  Wang JJ 《PloS one》2012,7(3):e33973
Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic.  相似文献   
996.
P Zhou  HF Ye  YX Jiang  J Yang  XJ Zhu  XH Sun  Y Luo  GR Dou  YS Wang  Y Lu 《PloS one》2012,7(8):e43173

Background

Cataract and geographic atrophy (GA, also called advanced “dry” age-related macular degeneration) are the two major causes of visual impairment in the developed world. The association between cataract surgery and the development of GA was controversial in previous studies.

Methods/Principal Findings

We performed a meta-analysis by pooling the current evidence in literature and found that cataract is associated with an increased risk of geographic atrophy with a summary odds ratio (OR) of 3.75 (95% CI: 95% CI: 1.84–7.62). However, cataract surgery is not associated with the risk of geographic atrophy (polled OR = 3.23, 95% CI: 0.63–16.47). Further experiments were performed to analyze how the αA-crystallin, the major component of the lens, influences the development of GA in a mouse model. We found that theαA-crystallin mRNA and protein expression increased after oxidative stress induced by NaIO3 in immunohistochemistry of retinal section and western blot of posterior eyecups. Both functional and histopathological evidence confirmed that GA is more severe in αA-crystallin knockout mice compared to wild-type mice.

Conclusions

Therefore, αA-crystallin may protect against geographic atrophy. This study provides a better understanding of the relationship between cataract, cataract surgery, and GA.  相似文献   
997.
Liu WH  Wang X  You N  Tao KS  Wang T  Tang LJ  Dou KF 《PloS one》2012,7(4):e35720

Background

Because few definitive markers are available for hepatic cancer stem cells (HCSCs), based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs.

Methodology

After hepatic tumor cells (HTCs) were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC) and purified via differential trypsinization and differential attachment (DTDA), they were separated into four fractions using percoll continuous gradient centrifugation (PCGC) and sequentially designated as fractions I–IV (FI–IV). Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction.

Findings

As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI–FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml) displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133) than cells from other fractions (P<0.01). Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×104 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice.

Conclusions

Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.  相似文献   
998.
999.
In type 2 diabetes, pancreatic β-cells cannot secret enough insulin compensate for insulin resistance, which are often accompanied by abnormality in lipid metabolism such as hypertriglyceridemia. It is reported that oxidative stress is involved in pancreatic β-cell dysfunction. However, molecular mechanisms linking between excessive generations of reactive oxygen species (ROS) and β-cell dysfunction and apoptosis induced by high levels of very low-density lipoprotein (VLDL) are poorly understood. In this study, we test the hypothesis that NADPH oxidase 2 (NOX2)-derived ROS may play a key role in dysfunction and apoptosis of pancreatic β-cell induced by VLDL. Our results show that the ApoCIII transgenic mice displayed increased serum TG levels, enhanced generation of ROS and impaired insulin content in pancreatic β-cells. In vitro, the treatment of pancreatic NIT-1 cells with 1?mg/ml VLDL for 12?h stimulated NOX2-derived ROS generation, decreased expression and secretion of insulin. Furthermore, we found that VLDL induced dysfunction and apoptosis of pancreatic β-cells through JNK and p53 pathways, which were rescued by siRNA-mediated NOX2 reduction. In conclusion, our data demonstrate a critical role of NOX2-derived ROS in dysfunction and apoptosis through JNK and p53 pathways in pancreatic β-cells induced by VLDL.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号